Steady-state gating of batrachotoxin-modified sodium channels. Variability and electrolyte-dependent modulation

نویسندگان

  • L D Chabala
  • B W Urban
  • L B Weiss
  • W N Green
  • O S Andersen
چکیده

The steady-state gating of individual batrachotoxin-modified sodium channels in neutral phospholipid bilayers exhibits spontaneous, reversible changes in channel activation, such that the midpoint potential (Va) for the gating curves may change, by 30 mV or more, with or without a change in the apparent gating valence (za). Consequently, estimates for Va and, in particular, za from ensemble-averaged gating curves differ from the average values for Va and za from single-channel gating curves. In addition to these spontaneous variations, the average Va shifts systematically as a function of [NaCl] (being -109, -88, and -75 mV at 0.1, 0.5, and 1.0 M NaCl), with no systematic variation in the average za (approximately 3.7). The [NaCl]-dependent shifts in Va were interpreted in terms of screening of fixed charges near the channels' gating machinery. Estimates for the extracellular and intracellular apparent charge densities (sigma e = -0.7 and sigma i = -0.08 e/nm2) were obtained from experiments in symmetrical and asymmetrical NaCl solutions using the Gouy-Chapman theory. In 0.1 M NaCl the extracellular and intracellular surface potentials are estimated to be -94 and -17 mV, respectively. The intrinsic midpoint potential, corrected for the surface potentials, is thus about -30 mV, and the standard free energy of activation is approximately -12 kJ/mol. In symmetrical 0.1 M NaCl, addition of 0.005 M Ba2+ to the extracellular solution produced a 17-mV depolarizing shift in Va and a slight reduction in za. The shift is consistent with predictions using the Gouy-Chapman theory and the above estimate for sigma e. Subsequent addition of 0.005 M Ba2+ to the intracellular solution produced a approximately 5-mV hyperpolarizing shift in the ensemble-averaged gating curve and reduced za by approximately 1. This Ba(2+)-induced shift is threefold larger than predicted, which together with the reduction in za implies that Ba2+ may bind at the intracellular channel surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological modification of sodium channels from the human heart atrium in planar lipid bilayers: electrophysiological characterization of responses to batrachotoxin and pentobarbital.

BACKGROUND AND OBJECTIVE To investigate the effects of barbiturates on batrachotoxin-modified sodium channels from different regions of the human heart. Single sodium channels from human atria were studied and compared with existing data from the human ventricle and from the central nervous system. METHODS Sodium channels from preparations of human atrial muscle were incorporated into planar ...

متن کامل

Voltage dependence of intramembrane charge movement and conductance activation of batrachotoxin-modified sodium channels in frog node of Ranvier

Sodium current and sodium channel intramembrane gating charge movement (Q) were monitored in voltage-clamped frog node of Ranvier after modification of all sodium channels by batrachotoxin (BTX). BTX caused an approximately threefold increase in steepness of the Q vs. voltage relationship and a 50-mV negative shift in its midpoint. The maximum amount of intramembrane charge was virtually identi...

متن کامل

Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements.

We have observed the opening and closing of single batrachotoxin (BTX)-modified sodium channels in neuroblastoma cells using the patch-clamp method. The conductance of a single BTX-modified channel is approximately 10 pS. At a given membrane potential, the channels are open longer than are normal sodium channels. As is the case for normal sodium channels, the open dwell times become longer as t...

متن کامل

Grayanotoxin-I-modified eel electroplax sodium channels. Correlation with batrachotoxin and veratridine modifications

To probe the structure-function relationships of voltage-dependent sodium channels, we have been examining the mechanisms of channel modification by batrachotoxin (BTX), veratridine (VTD), and grayanotoxin-I (GTX), investigating the unifying mechanisms that underlie the diverse modifications of this class of neurotoxins. In this paper, highly purified sodium channel polypeptides from the electr...

متن کامل

The properties of batrachotoxin-modified cardiac Na channels, including state-dependent block by tetrodotoxin

Batrachotoxin (BTX) modification and tetrodotoxin (TTX) block of BTX-modified Na channels were studied in single cardiac cells of neonatal rats using the whole-cell patch-clamp recording technique. The properties of BTX-modified Na channels in heart are qualitatively similar to those in nerve. However, quantitative differences do exist between the modified channels of these two tissues. In the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 98  شماره 

صفحات  -

تاریخ انتشار 1991